PRESPAWNING MORTALITY OF FALL CREEK WILLAMETTE CHINOOK SALMON:

EVALUATION OF THE EFFECTS OF A NEW TRAP AT THE ADULT FISH COLLECTION FACILITY

K. Carey, L. Whitman, C. Sharpe, C. Couch, M.L. Kent, J. Sanders, C.B. Schreck, and J.T. Peterson

Trap, Transport and Outplanting MF Willamette

Problem: Prespawning Mortality (PSM)

Adult salmon that die after reaching their spawning grounds but prior to the successful release of gametes

Why do salmon die early?

EFFECTS OF STRESS + CUSHING'S SYNDROME

Estimated Prespawning Mortality Fall Creek Pre-Improvement

PSM: POTENTIAL STRESSORS

Exploratory analysis, 2010-2021 data

River Conditions (migration)

Pathogens 🗸

Density Dependence

Human Disturbance

Example: Below dam temperature effects

Preliminary results subjected to revision

Objectives

Develop decision model -- minimize PSM

Sensitivity analysis

Value of information (key unknowns)

Adaptive framework for PSM management

Decision modeling

3 submodels: hypotheses

Below dam temperature
Total thermal exposure
Human disturbance

2010-2020 PSM data Published reports

Weight equally

3 monthly decision alternatives Simulation 3000x

Results: Model fitting

Male= red Female = black

Results: top five alternatives

Sensitivity analysis

The best alterative differs among models (hypotheses)

Preliminary results subjected to revision

Value of sample information

Preliminary results subjected to revision

Adaptive management updating

How does this really work?

Updating illustration

Simulated management and monitoring

5 years, model weights updated annually

Optimal actions + no action

Simulated under alternative 'true' hypotheses

Effect of sampling error (sample effort)

Effect of model prediction error

3K iterations

No management = Slow / No learning

Management action = Do nothing Carcass detection = 25%

Truth = Below dam temperature hypothesis

Sample error affects rate of learning

Management action = Manage flows for temperature May Truth = Thermal exposure hypothesis Single year simulation

Decision model error affects rate of learning

Management action = Stop stream access July Carcass detection = 25%

Truth = Human disturbance hypothesis

Learning occurs if 'wrong' decision made

Management action = Stop stream access July Carcass detection = 25%
Truth = Thermal exposure hypothesis

CONCLUSION

PSM: Many unknowns remain

Beyond trap and transport management?

Adaptive management reducing PSM and uncertainty

Integrating modeling, monitoring, and management

Sampling and prediction errors

ACKNOWLEDGEMENTS

Funding: USACE

ODFW

Research

Managers

USACE

Oregon State University

Oregon Cooperative Fish and Wildlife Research Unit

